Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathogens ; 11(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35745535

RESUMEN

Proliferative kidney disease (PKD), caused by the myxozoan parasite Tetracapsuloides bryosalmonae, is suspected to contribute to the decline of wild brown trout Salmo trutta populations. Different factors need to be taken into consideration for PKD outbreaks. Among them, water temperature appears as a main driver of the disease. To understand the epidemiology and impact of the disease on wild fish populations, reliable sampling approaches to detect the presence of T. bryosalmonae-infected fish are needed. This study aimed to characterize the seasonal variation of the prevalence of T. bryosalmonae-infected fish in brown trout populations in two small streams with differing temperature regimes between upstream and downstream sites. As water temperature is known to influence PKD manifestation in brown trout, we hypothesized that the number of T. bryosalmonae-positive fish, as well as their seasonal distribution, will vary between upper and downstream parts of the two streams. Since, in field studies, results can strongly vary across years, we extended the study over a 3-year-period. The number of infected fish and the intensity of infection were assessed by histology. The results confirmed the hypothesis of pronounced temporal- and site-related differences in the percentage of PKD-positive fish and the intensity of the infection. Comparison of water temperatures (total degree days as well as the number of days with a daily mean temperature ≥15 °C) with PKD data indicated that temperature was the driving factor for the temporal development and the intensity of the infection. A mean of 1500 degree days or 30 days with a daily mean temperature ≥15 °C was required before the infection could be detected histologically. From our findings, recommendations are derived for a water temperature-driven sampling strategy campaigns that enables the detection of PKD infection and prevalence in wild brown trout populations.

2.
Front Vet Sci ; 6: 281, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31508435

RESUMEN

Proliferative kidney disease (PKD) is an emerging disease of salmonids caused by the myxozoan parasite Tetracapsuloides bryosalmonae, which plays a major role in the decrease of wild brown trout (Salmo trutta) populations in Switzerland. Strong evidence demonstrated that water temperature modulates parasite infection. However, less knowledge exists on how seasonal water temperature fluctuations influence PKD manifestation under field conditions, how further environmental factors such as water quality may modulate the disease, and whether these factors coalesce with temperatures role possibly giving rise to cumulative effects on PKD. The aims of this study were to (1) determine the correlation between seasonal course of water temperature and PKD prevalence and intensity in wild brown trout populations, (2) assess if other factors such as water quality or ecomorphology correlate with the infection, and (3) quantitatively predict the implication of these factors on PKD prevalence with a statistical model. Young-of-the-year brown trout were sampled in 45 sites through the Canton of Vaud (Switzerland). For each site, longitudinal time series of water temperature, water quality (macroinvertebrate community index, presence of wastewater treatment plant effluent) and ecomorphological data were collected and correlated with PKD prevalence and intensity. 251 T. bryosalmonae-infected trout of 1,118 were found (overall prevalence 22.5%) at 19 of 45 study sites (42.2%). Relation between PKD infection and seasonal water temperature underlined that the mean water temperature for June and the number of days with mean temperature ≥15°C were the most significantly correlated parameters with parasite prevalence and intensity. The presence of a wastewater treatment plant effluent was significantly correlated with the prevalence and infection intensity. In contrast, macroinvertebrate diversity and river ecomorphology were shown to have little impact on disease parameters. Linear and logistic regressions highlighted quantitatively the prediction of PKD prevalence depending on environmental parameters at a given site and its possible increase due to rising temperatures. The model developed within this study could serve as a useful tool for identifying and predicting disease hot spots. These results support the importance of temperature for PKD in salmonids and provides evidence for a modulating influence of additional environmental stress factors.

3.
PeerJ ; 6: e5956, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30479904

RESUMEN

Many ecosystems are influenced simultaneously by multiple stressors. One important environmental stressor is aquatic pollution via wastewater treatment plant (WWTP) effluents. WWTP effluents may contribute to eutrophication or contain anthropogenic contaminants that directly and/or indirectly influence aquatic wildlife. Both eutrophication and exposure to anthropogenic contaminants may affect the dynamics of fish-parasite systems. With this in mind, we studied the impact of WWTP effluents on infection of brown trout by the parasite Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease (PKD). PKD is associated with the long-term decline of wild brown trout (Salmo trutta) populations in Switzerland. We investigated PKD infection of brown trout at two adjacent sites (≈400 m apart) of a Swiss river. The sites are similar in terms of ecology except that one site receives WWTP effluents. We evaluated the hypothesis that fish inhabiting the effluent site will show greater susceptibility to PKD in terms of prevalence and disease outcome. We assessed susceptibility by (i) infection prevalence, (ii) parasite intensity, (iii) host health in terms of pathology, and (iv) estimated apparent survival rate. At different time points during the study, significant differences between sites concerning all measured parameters were found, thus providing evidence of the influence of effluents on parasitic infection of fish in our study system. However, from these findings we cannot determine if the effluent has a direct influence on the fish host via altering its ability to manage the parasite, or indirectly on the parasite or the invertebrate host via increasing bryozoa (the invertebrate host) reproduction. On a final note, the WWTP adhered to all national guidelines and the effluent only resulted in a minor water quality reduction assessed via standardized methods in this study. Thus, we provide evidence that even a subtle decrease in water quality, resulting in small-scale pollution can have consequences for wildlife.

4.
PLoS One ; 11(9): e0163968, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27685955

RESUMEN

BACKGROUND AND AIMS: Soils of mountain regions and their associated plant communities are highly diverse over short spatial scales due to the heterogeneity of geological substrates and highly dynamic geomorphic processes. The consequences of this heterogeneity for biogeochemical transfers, however, remain poorly documented. The objective of this study was to quantify the variability of soil-surface carbon dioxide efflux, known as soil respiration (Rs), across soil and vegetation types in an Alpine valley. To this aim, we measured Rs rates during the peak and late growing season (July-October) in 48 plots located in pastoral areas of a small valley of the Swiss Alps. FINDINGS: Four herbaceous vegetation types were identified, three corresponding to different stages of primary succession (Petasition paradoxi in pioneer conditions, Seslerion in more advanced stages and Poion alpinae replacing the climactic forests), as well as one (Rumicion alpinae) corresponding to eutrophic grasslands in intensively grazed areas. Soils were developed on calcareous alluvial and colluvial fan deposits and were classified into six types including three Fluvisols grades and three Cambisols grades. Plant and soil types had a high level of co-occurrence. The strongest predictor of Rs was soil temperature, yet we detected additional explanatory power of sampling month, showing that temporal variation was not entirely reducible to variations in temperature. Vegetation and soil types were also major determinants of Rs. During the warmest month (August), Rs rates varied by over a factor three between soil and vegetation types, ranging from 2.5 µmol m-2 s-1 in pioneer environments (Petasition on Very Young Fluvisols) to 8.5 µmol m-2 s-1 in differentiated soils supporting nitrophilous species (Rumicion on Calcaric Cambisols). CONCLUSIONS: Overall, this study provides quantitative estimates of spatial and temporal variability in Rs in the mountain environment, and demonstrates that estimations of soil carbon efflux at the watershed scale in complex geomorphic terrain have to account for soil and vegetation heterogeneity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...